
1

Department of Computer Engineering, Chulalongkorn University

Secure Bit: Buffer Overflow Protection

 “Give me a (little) bit,
and I will solve buffer overflow.”

Krerk Piromsopa, Ph.D.
Department of Computer Engineering

January 25, 2006Secure Bit: Buffer-Overflow Protection 2

Department of Computer Engineering, Chulalongkorn University

Overview
Introduction
Reviews
Theory
Secure Bit
Design

Implementation
Evaluation
Analysis
Conclusion
Demo

January 25, 2006Secure Bit: Buffer-Overflow Protection 3

Department of Computer Engineering, Chulalongkorn University

#include <stdio.h>
int main(char argc,char *argv[]) {
 int age;
 char name[8];
 char tmp[20];
 printf("Enter your age:");
 gets(tmp);
 age=atoi(tmp);
 printf("Enter your name:");
 gets(name);
 printf("-----------\n%s is %d
years old\n“

,name,age);
}

$./a.out
Enter your age:15

Enter your name: RichardJ1

RichardJ1 is 49 years old

15

Simple Buffer Overflow

name age

15“RichardJ” ‘1’ ’\0’

What’s wrong?

January 25, 2006Secure Bit: Buffer-Overflow Protection 4

Department of Computer Engineering, Chulalongkorn University

Stack Buffer Overflows at Work

Buffers Other vars

E
B

P

E
IP Args

void func(char *p, int i) {
 int j = 0;
 CFoo foo;
 int (*fp)(int) = &func;
 char b[128];
 strcpy(b,p);
}

Function
return

address

Exception handlers
Function pointers
Virtual methods

All determine
execution flow

0wn3d
!

Bad things happen if *p
points to data longer than bMichael Howard, Microsoft.

Return-address
attacks
(Stack smashing)
Function-pointer
attacks
Frame-pointer
attacks

2

January 25, 2006Secure Bit: Buffer-Overflow Protection 5

Department of Computer Engineering, Chulalongkorn University

Sample Buffer-Overflow Attack
An arbitrary pointer to any location
Targets any control data (mostly)
e.g. Apache SLAPPER

int vulnerable(char **argv) {
int x;
char *ptr;
char buffer[30];
ptr=buffer;
printf("ptr %p - before\n",ptr);
strcpy(ptr,argv[1]);
printf("ptr %p - after\n",ptr);
strcpy(ptr,argv[2]);
printf(“done\n”);

}

buffer ptr x

Jump Slot
Function Pointer

(Control Data)

1

2

printf
jump
slot

January 25, 2006Secure Bit: Buffer-Overflow Protection 6

Department of Computer Engineering, Chulalongkorn University

Observations
Mandatory conditions:
– Injecting malicious code/data ?

or known address of shell code.
– Redirect program

to execute malicious code/data
Similar Vulnerabilities
– Integer Overflow

(A subset of buffer-overflow)
– “printf” vulnerability

January 25, 2006Secure Bit: Buffer-Overflow Protection 7

Department of Computer Engineering, Chulalongkorn University

Classification
of Buffer Overflow Protection

Buffer-overflow Protections

Static analysis Dynamic Solutions Isolation

Lexical Analysis

Semantic Analysis

Address Protection

Input Protection

Bounds Checking

Obfuscation

Non-executable

Sandboxing

January 25, 2006Secure Bit: Buffer-Overflow Protection 8

Department of Computer Engineering, Chulalongkorn University

Static Analysis

Examples
 ITS4 – string matching
 FlawFinder & RATS
 Splint, BOON – security

enhanced lint, semantic analysis
 STOBO – profiling tool
 LibSafe – safe standard C lib

Prevent the problem before deploying the program.
Only known problems are prevented.
No run-time info
False alarm ?

3

January 25, 2006Secure Bit: Buffer-Overflow Protection 9

Department of Computer Engineering, Chulalongkorn University

Dynamic Solutions
Address Protection
Input Protection
Bounds Checking
Obfuscation

Issues
 Assumptions
 Creation of metadata
 Validation of metadata
 Handling of invalid data

January 25, 2006Secure Bit: Buffer-Overflow Protection 10

Department of Computer Engineering, Chulalongkorn University

Address Protection: metadata
Canary Words Address Encode

Copy of Address Tags

Use canary for
detecting the
modification of
addresses
StackGuard,
ProPolice

Use another
copy for
verification
StackGhost,
RAS, Split
Stack, RAD,
DISE,
StackShield,
SCACHE,
LibVerify

ke
y

Po
in
te
r

Memory

Pointer

data

?

Encode an
address with
a pre-defined
key
Decode on
dereference
PointGuard

Shadow
StorageStack

return 1

return 1

stack frame

return 2

return 2

Use a bit
associated with
each word for
tagging return
address,
function
pointers
IBM system/38

Parameters

Buffer

Function Pointer

buffer

Encode

January 25, 2006Secure Bit: Buffer-Overflow Protection 11

Department of Computer Engineering, Chulalongkorn University

Other Dynamic Solutions

Symbol table/
Segment
Descriptor Table
Enhanced
Pointers,
Segmentation

Permute the
order of
variables,
routines, and
structures
Address
Obfuscation,
ASLRbuffer

return address

Random offset

Bound Checking Obfuscation

January 25, 2006Secure Bit: Buffer-Overflow Protection 12

Department of Computer Engineering, Chulalongkorn University

Input Protection

Input must not be used as
control data
Boundary
– Minos: segmentation
– Tainted pointer: SimpleScalar

I/O functions
– Dynamic Flow Tracking:

SimpleScalar I/O functions
Untaint
– Minos: creation time
– Tainted pointer: CMP, XOR
– Dynamic Flow Tracking: XOR

Untrustworthy
 domains

return address

Buffer 1

4

January 25, 2006Secure Bit: Buffer-Overflow Protection 13

Department of Computer Engineering, Chulalongkorn University

Isolation
Limit the execution of code that may
result from buffer-overflow attacks.
(NX, kernel NX)

Sandbox the whole process
from accessing certain system
resources based on
a predefined policy. (TCPA)

Secure code installation
and run-time environment (SPEF)

January 25, 2006Secure Bit: Buffer-Overflow Protection 14

Department of Computer Engineering, Chulalongkorn University

Additional Space & Interface (Ctd.)

Meta data is necessary.
Segmentation:
– IA-32 uses 64-bit descriptor,

I-432 uses 128-bit descriptor.
– 1 descriptor per variable

StackGuard:
– A canary word per call

Secure Bit:
– 1 bit (Minimum?)
– 1 time cost

•Effectiveness?
•Run-time Penalty?

January 25, 2006Secure Bit: Buffer-Overflow Protection 15

Department of Computer Engineering, Chulalongkorn University

SimpleScalar
A RISC architecture = Simple ISA
Simple design
Parallelism & Hazards
Caches

January 25, 2006Secure Bit: Buffer-Overflow Protection 16

Department of Computer Engineering, Chulalongkorn University

Split Stack

Separate Control and Data Stack
By UIUC

5

January 25, 2006Secure Bit: Buffer-Overflow Protection 17

Department of Computer Engineering, Chulalongkorn University

IBM ProPolice

Original Code
int bar() {

void (* funct2)();

char buff[80];

Guard Value (Similar to
StackGuard)
Declare pointers after
buffer.
Pointer in Structure ?

Figure from J. Etoh., “GCC extension for protecting applications from stack-smashing attacks,”
http://www.trl.ibm.com/projects/security/ssp/ , June 2000 By IBM Research, Japan

Reorder Code
int bar() {

char buff[80];

void (* funct2)();

January 25, 2006Secure Bit: Buffer-Overflow Protection 18

Department of Computer Engineering, Chulalongkorn University

Others (software)
Adddress Obfuscation: (By Stony Brook U., NY.)

– Randomize the base address
of the memory segment

– Permute the order of
variables/routines

– Problem: Fragmentation,
compatibility ?

SPEF: (By Microsoft & UCLA)

– Using encryption to securely install
the software

– Instruction is decoded
and reordered in I-CACHE

Instruction-Set Randomization
(By Columbia U. & Draxel U)

– XORing instruction with a per-
process key

Difficulty in injecting malicious
code/data does not protect the
system from buffer overflow
attacks. Why ?

•LibSafe & LibVerify (By Bell-Labs)

January 25, 2006Secure Bit: Buffer-Overflow Protection 19

Department of Computer Engineering, Chulalongkorn University

StackGuard
Random canary
Terminator canary
Terminator with
diversity canary
MemGuard Protection
Similar tool from
IBM ProPolice
Alignment?

By Oregon Graduate Institute (Immunix)
Figure from “StackGuard: Defending Programs Against Stack Smashing Attacks,”
Poster Presentation from http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/

January 25, 2006Secure Bit: Buffer-Overflow Protection 20

Department of Computer Engineering, Chulalongkorn University

PointGuard

Encrypt the pointer for storing, decrypt for dereferring
Compatibility ?
Initialization ?
Performance ?
Encryption Algorithm ?

By Oregon Graduate Institute (Immunix)

6

January 25, 2006Secure Bit: Buffer-Overflow Protection 21

Department of Computer Engineering, Chulalongkorn University

Array Bounds Checking/Segmentation

Symbol table/ Segment
Descriptor Table
Explicitly declare and
refer every buffer with
base and boundary
(including integer, float,..
Why ?)

Example: Intel IA-32,
I-432
More than 30 times
slowdown

char *a;
char
b[10];
*a = &b;
b[11]=10;

for
(a=b;a<&b[10];a++)

*a=‘0’;

January 25, 2006Secure Bit: Buffer-Overflow Protection 22

Department of Computer Engineering, Chulalongkorn University

Address Obfuscation

Randomize the base address
of the memory segment
Permute the order of
variables/routines
Random gaps between object
Problem: Fragmentation,
compatibility ?
Similar method: PAX’s ASLR
(Address Space Layout
Randomization)

By Stony Brook U., NY.

Text (Read-only)

Data

BSS

Stack

Heap

January 25, 2006Secure Bit: Buffer-Overflow Protection 23

Department of Computer Engineering, Chulalongkorn University

SPEF
Secure Program Execution Framework
Using encryption to securely install the software
Instruction is decoded
and reordered in I-CACHE
Difficult to inject malicious code
Performance ?
Data ?

By Microsoft & UCLA

January 25, 2006Secure Bit: Buffer-Overflow Protection 24

Department of Computer Engineering, Chulalongkorn University

Others (software)
StackGhost: (by Purdue)

– Use register window
Split Stack: (by UIUC)

– Separate control and
data stack

SRAS: (by UIUC)

– Use RAS as a validation
copy the address

Overflow?, Speculative
update (non-LIFO)?

RAD: (By State U. of New York at Stony Brook)

– Use mprotect to protect Return
Address Repository (RAR)

– MineZone RAR, Read-only RAR
– Performance ?

StackShield: (by Vendicator)

– Save redundant copy of return
address

– Copy the return address from
the redundant copy back to
original stack

– Check the return address with
the redundant copy

– Force the code to be in text
section

– Legal use of executing code in
heap : LISP, OOP

7

January 25, 2006Secure Bit: Buffer-Overflow Protection 25

Department of Computer Engineering, Chulalongkorn University

Hardware:
Non-Executable Stack/Memory

Software/Hardware “NX”
(currently in the news)
Heap-based attacks
Legal use of executable stack ?
Attacks that do not injecting
the malicious code/data?

January 25, 2006Secure Bit: Buffer-Overflow Protection 26

Department of Computer Engineering, Chulalongkorn University

Instruction Set Randomization
XORing instruction with key
Per process key
Difficult to inject malicious code
Library ?
Data ?

By Columbia U. & Draxel U.

January 25, 2006Secure Bit: Buffer-Overflow Protection 27

Department of Computer Engineering, Chulalongkorn University

Complement to
Intel’s LaGrande & Microsoft’s NGSCB

NGSCB
– Strong process

isolation
– Sealed storage
– Secure user

interface
– Attestation

Hardware support
sandboxing
– Domain separation

Trusted = Secure ?

January 25, 2006Secure Bit: Buffer-Overflow Protection 28

Department of Computer Engineering, Chulalongkorn University

Analysis
Pitfalls
– Insufficient assumptions
– Insufficient protection of

metadata

Performance
Compatibility and
Transparency
(e.g. non-LIFO control
flows)
Deployment and Cost

SLAPPER

8

January 25, 2006Secure Bit: Buffer-Overflow Protection 29

Department of Computer Engineering, Chulalongkorn University

Compatibility:
Non-LIFO Control Flow
NEAR_ENTRY:

POP AX ; POP instruction pointer (IP)
; from the top of stack into
; accumulator (AX)

PUSHCS ; PUSH CS
PUSHAX ; PUSH IP back onto stack

FAR_ENTRY:

RETF ; POP IP and CS off stack

•FAR & NEAR Call
Optimization (for
size)
•RET for JMP
•More..

IP CS

IPCanary
…

Current approaches?
•Ignore
•Cannot handle…

January 25, 2006Secure Bit: Buffer-Overflow Protection 30

Department of Computer Engineering, Chulalongkorn University

From articles
Microprogramming, April, 1972
“I believe that
the average computer of the year 2000 will: ….
– Have word by word protection and data

description, …”

ACM SIGARCH, July, 2003
“Is anyone up for a discussion of capabilities,
segments, 2-dimensional memory? Techniques
which, among other things, render buffer overrun
impossible.”

January 25, 2006Secure Bit: Buffer-Overflow Protection 31

Department of Computer Engineering, Chulalongkorn University

Facts
Buffer overflow can occur in Java, Perl or
any type-safe languages.
No protection mechanism is perfect, but the
reimplementation of all code: BIOS, Kernel,
Library (Static & Dynamic), Drivers,
applications, etc…

Why?

Really?

How about the Secure Bit?

January 25, 2006Secure Bit: Buffer-Overflow Protection 32

Department of Computer Engineering, Chulalongkorn University

Theory
Definition 1:The condition wherein the data transferred to a
buffer exceeds the storage capacity of the buffer and some of the
data "overflows" into another buffer, one that the data was not
intended to go into.
Definition 2: A buffer-overflow attack on control data is an
attack that (possibly implicitly) uses memory-manipulating
operations to overflow a buffer which results in the modification of
an address to point to malicious or unexpected code.
Observation: An analysis of buffer-overflow attacks indicates
that a buffer of a process is always overflowed with a buffer
passed from another domain (machine, process)—hence its
malicious nature.
Definition 3: Maintaining the integrity of an address means that
the address has not been modified by overflowing with a buffer
passed from another domain.

9

January 25, 2006Secure Bit: Buffer-Overflow Protection 33

Department of Computer Engineering, Chulalongkorn University

Theory

Corollary 1.1: Preserving the integrity of an address is a sufficient condition for
preventing a buffer-overflow attack.
Restatement: If the integrity of an address is preserved, that is a sufficient condition for

preventing a buffer-overflow attack.

Proof: From Theorem 1, “If there is to be a buffer-overflow attack, an address must be
modified by manipulating a buffer from another domain.” The contrapositive of that
statement is “If an address cannot be modified (or such modification can be detected),
then a buffer-overflow attack is not possible.” We know that the contrapositive of a true
statement is true.

QED

Postulate 1: In buffer-overflow attacks on control data, the generic buffer/memory-
manipulating operations are used by the vulnerable routine to overflow the address (e.g. a
return address or a function pointer).

Theorem 1: Modifying an address by replacing (“overflowing”) it using a buffer passed from
another domain is a necessary condition for buffer-overflow attack on control data.

Restatement: If there is to be a buffer-overflow attack on control data, an
address must be modified using a buffer passed from another domain.

Proof:
Theorem 1 follows directly from Definition 1, and Definition 2.

QED

January 25, 2006Secure Bit: Buffer-Overflow Protection 34

Department of Computer Engineering, Chulalongkorn University

Secure Bit
Give me a little Bit and I will solve buffer-overflow attacks.

Protocol 1:
Passing a buffer across domains (devices, machines,
and processes) always sets the Secure Bit.

Hardware Enforcement: (Protocol 2)
Data from another domain (with Secure Bit set) must
not be used as jump target.

Restatement: All input will have the Secure Bit set.

January 25, 2006Secure Bit: Buffer-Overflow Protection 35

Department of Computer Engineering, Chulalongkorn University

Secure Bit (Cont.)

Similar Concepts

“All input is evil until proven otherwise”
[Howard and LeBlanc]

“Data must be validated as it crosses the boundary
between untrusted and trusted environments.”
[Howard and LeBlanc]

January 25, 2006Secure Bit: Buffer-Overflow Protection 36

Department of Computer Engineering, Chulalongkorn University

Concept

10

January 25, 2006Secure Bit: Buffer-Overflow Protection 37

Department of Computer Engineering, Chulalongkorn University

Secure System
Definition 4: A security policy is a statement that
partitions the states of the system into a set of
authorized, or secure, states and a set of
unauthorized or nonsecure, states. [Bishop]
Definition 5: A secure system is a system that
starts in an authorized state and cannot enter an
unauthorized state. [Bishop]

Secure
Non-

secure

January 25, 2006Secure Bit: Buffer-Overflow Protection 38

Department of Computer Engineering, Chulalongkorn University

Formalization

Lemma 2: A system which preserves the integrity of an
address (e.g. a return addresses or a function pointer) is a
secure system with respect to buffer-overflow attacks.

Restatement: A system that does not use input as a control
data is a secure system with respect to buffer-overflow attacks
on control data.

January 25, 2006Secure Bit: Buffer-Overflow Protection 39

Department of Computer Engineering, Chulalongkorn University

Proof:
Assume that a system is partitioned into two states:

normal operation and buffer-overflow attack.
Only overwriting the address (e.g. a return address or a function pointer) with an
address passed as a buffer (input) to vulnerable programs will result in the state of
buffer-overflow attack.

By the definition of buffer-overflow attacks (Definition 2)
If such overflowing can be recognized and prevented, the system will not result in
the state of buffer-overflow attacks.

By the definition of preservation of the address (Definition 3)
With respect to Definition 5, our system cannot enter an unauthorized state and is
considered to be a secure system

QED

Restatement: A system that does not use input as a control data is a secure
system with respect to buffer-overflow attacks on control data.

Normal
Operation

Buffer-
overflow
Attacks

January 25, 2006Secure Bit: Buffer-Overflow Protection 40

Department of Computer Engineering, Chulalongkorn University

Formalization (Cont.)

Proof:
With Secure Bit and Protocol 1, we can detect that an address
(e.g. a return address or a function pointer) is overflowed by a buffer
passed from another domain (including input).
If we can detect that an address is modified by a buffer from another
domain, we can preserve the integrity of the address.

This follows directly from Definition 3.
Thus Secure Bit preserves the integrity of the address and is a secure
system with respect to buffer-overflow attacks.

This follows directly from Lemma 2.
QED

Lemma 3: Secure Bit and Protocol 1 can preserve the integrity of an
address, and result in a secure system with respect to buffer-overflow
attacks.

11

January 25, 2006Secure Bit: Buffer-Overflow Protection 41

Department of Computer Engineering, Chulalongkorn University

Protocol Enforcement
“Threat surface” is defined as all possible input
crossing from the software interface.
A domain is a boundary with respect to the current
process
sbit_write mode is added to a processor for
passing data across domain (set Secure Bit)
The kernel will use this mode to move data across
domains.
Call, Jump, and Return instructions are
modified.

January 25, 2006Secure Bit: Buffer-Overflow Protection 42

Department of Computer Engineering, Chulalongkorn University

Design: Memory Architecture
An additional bit for

a word of memory

High order bits 3 bits

Physical Memory Address Main
memory

SecureBits
Secure Bit Address

Base Register

+

January 25, 2006Secure Bit: Buffer-Overflow Protection 43

Department of Computer Engineering, Chulalongkorn University

Design: Instruction Set Architecture

sbit_write flag
The semantics of the CALL and JUMP instruction are
modified to validate the Secure Bit
Other instructions that access memory are modified to
carry the Secure Bit along with the memory word when the
sbit_write mode is cleared, and to set the Secure Bit at the
destination when the sbit_write mode is set.
Operations (e.g. shift, arithmetic, or logical) with an
insecure operand have an insecure result (Secure Bit is
set). An immediate operand is considered to be secure
(Secure Bit is cleared).

January 25, 2006Secure Bit: Buffer-Overflow Protection 44

Department of Computer Engineering, Chulalongkorn University

Design (Cont.)
ALU

Program Counter

Registers

PC

Exception ?

EAX

12

January 25, 2006Secure Bit: Buffer-Overflow Protection 45

Department of Computer Engineering, Chulalongkorn University

Design: Operating System
Domains and Buffer Manipulation
– Moving data between

Kernel and Process
in sbit_write mode

Virtual Memory
– Firmware
– Software Management
– Regular Paging on top

of modified Hardware

High order bits 3 bits

Physical Memory Address Main
memory

SecureBits
Secure Bit Address

Base Register

+

January 25, 2006Secure Bit: Buffer-Overflow Protection 46

Department of Computer Engineering, Chulalongkorn University

Implementation
BOCHS C++ Objects
Memory Boundary
Multiple Instances
Instructions Set

More than 5304
routines
(3600 routines in CPU
Object)

Memory Object

CPU Object I/O

Disk

Peripheral

Etc.

BIOS MEM Etc.

January 25, 2006Secure Bit: Buffer-Overflow Protection 47

Department of Computer Engineering, Chulalongkorn University

BOCHS: Secure Bit interface

Read Secure BitSet/Clear Secure Bit

// Read Secure Bit by KPR
Bit32u a20addr_s;
Bit8u sbyte;
Bit8u sread;
sread=0x00;
for (int i=0;i<len ;i++)
{

a20addr_s=(a20addr+i)>>3;
sbyte=(a20addr+i) &

0x00000007;
sbyte=1 << sbyte;

sread|=(vector_s[a20addr_s]&sbyte)
;

sbyte=sbyte<<1;
}
*sbit=sread;

// Set/Clear Secure Bit by KPR
Bit32u a20addr_s;
Bit8u sbyte;
for (int i=0;i<len ;i++)
{

a20addr_s=(a20addr+i)>>3;
sbyte=(a20addr+i) &

0x00000007;
sbyte=1 << sbyte;
if (*sbit==1)
{ // set

vector_s[a20addr_s]|=(sbyte&0xff)
;

}
else
{ // clear

vector_s[a20addr_s]&=~(sbyte&0xff
);

}
sbyte=sbyte<<1;

}

January 25, 2006Secure Bit: Buffer-Overflow Protection 48

Department of Computer Engineering, Chulalongkorn University

BOCHS: Memory Interfaces
/// Overload Functions
/// For Secure Bit (KPR)
///
/// Read Data and Secure Bit
BX_MEM_SMF void readPhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmN(3);
/// Write Data and Secure Bit
BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmN(3);
/// Write Data (with optional Secure Bit)
/// if ignore=0, leave the Secure Bit unmodified
BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit,int ignore) BX_CPP_AttrRegparmN(3);
///
/// End (KPR)
///
/// Read Data, ignore Secure Bit
BX_MEM_SMF void readPhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data) BX_CPP_AttrRegparmN(3);
/// Write Data, ignore Secure Bit
BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data) BX_CPP_AttrRegparmN(3);

Avoid modifying 3000+ routines

13

January 25, 2006Secure Bit: Buffer-Overflow Protection 49

Department of Computer Engineering, Chulalongkorn University

BOCHS: Instruction Set
Macros for operations on Secure Bit

// Secure Bit operation for each type of ALU instruction
#define SBIT_SHX(sbit1) (sbit1 ==0)?0:1
#define SBIT_ROX(sbit1) (sbit1 ==0)?0:1
#define SBIT_XOR(sbit1,sbit2) (sbit1|sbit2)==0?0:1
#define SBIT_AND(sbit1,sbit2) (sbit1|sbit2)==0?0:1
#define SBIT_OR(sbit1,sbit2) (sbit1|sbit2)==0?0:1
#define SBIT_NOT(sbit1) (sbit1 ==0)?0:1
#define SBIT_ADD(sbit1,sbit2) (sbit1|sbit2)==0?0:1
#define SBIT_SUB(sbit1,sbit2) (sbit1|sbit2)==0?0:1
#define SBIT_MUL(sbit1,sbit2) (sbit1|sbit2)==0?0:1 // and DIV

Set Secure Bit
sbit=(sbit_mode)? 1:sbit;

Validate Control data
 // Validate call target
 if (sbit != 0) {
 BX_INFO(("call_ew: sbit of target is not secure"));
#ifdef HAS_SBIT_EXCEPTION
 exception(BX_GP_EXCEPTION, 0, 0);
#endif
 }

About 2410 lines of code in
607 routines affected

January 25, 2006Secure Bit: Buffer-Overflow Protection 50

Department of Computer Engineering, Chulalongkorn University

Linux Kernel
Threat
Surface

January 25, 2006Secure Bit: Buffer-Overflow Protection 51

Department of Computer Engineering, Chulalongkorn University

Linux Kernel (Sample Code)

// For Secure Bit 2
#define SET_SBITMODE() \
 asm volatile(\
 " pushl %eax\n" \
 " lahf\n" \
 " orb $0x20, %ah\n" \
 " sahf\n" \
 " popl %eax“)
#define CLR_SBITMODE() \
 asm volatile(\
 " pushl %eax\n" \
 " lahf\n" \
 " andb $0xdf, %ah\n" \
 " sahf\n" \
 " popl %eax”)

unsigned long
__generic_copy_to_user(void *to,

const void *from, unsigned
long n)

{
SET_SBITMODE();
if (access_ok(VERIFY_WRITE,
to, n))

__copy_user(to,from,n);
CLR_SBITMODE();
return n;

}

Sbit_write mode

January 25, 2006Secure Bit: Buffer-Overflow Protection 52

Department of Computer Engineering, Chulalongkorn University

Evaluation

Booting Linux: complex test of compatibility of Secure Bit
from an operating system point of view
Running existing application: Test of backward compatibility
and transparency to a legacy application
Hacking Test: Test protection against buffer overflow, i.e.
test the effectiveness of Secure Bit
Modified Instructions: the impact of Secure Bit on
instruction set architecture

14

January 25, 2006Secure Bit: Buffer-Overflow Protection 53

Department of Computer Engineering, Chulalongkorn University

Tested Applications
gzip (SPEC CPU2000): Lempel-Ziv coding (LZ77) compression
algorithm
bzip2 (SPEC CPU2000): Burrows-Wheeler block-sorting text
compression algorithm, and Huffman coding.
gcc (SPEC CPU2000): Compiler. Exercises a wide variety of data
structures
Perl and Shell scripts: Popular scripting languages.
OpenSSL: cryptography library
Apache with mod_ssl: Apache version 1.3.12 and mod_ssl. Vulnerable
to SLAPPER worm. multithreaded server application (including SSL).
Telnetd and WUFTPD: legacy network applications (and protocols).
OpenSSH: Encrypted client-server applications.
Java Virtual Machine: Sun JVM and Kaffe. Garbage collector, Virtual
Machine and lightweight processes (threads).

January 25, 2006Secure Bit: Buffer-Overflow Protection 54

Department of Computer Engineering, Chulalongkorn University

Hacking Test

Stack smashing and return-address attacks

Function-pointer attacks

Global Offset Table attacks

Apache SLAPPER worm

See DEMO

January 25, 2006Secure Bit: Buffer-Overflow Protection 55

Department of Computer Engineering, Chulalongkorn University

Analysis
Space & Memory Interface
– Trivial modifications
– Covered in 3 days of

MOORE’s LAW
– Minimal (comparing to

Segmentation)

Backward Compatibility
– 100% to legacy user binaries

Deployment
– Processor only solution

Performance
– No significant penalty

High order bits 3 bits

Physical Memory Address Main
memory

SecureBits
Secure Bit Address

Base Register

+

January 25, 2006Secure Bit: Buffer-Overflow Protection 56

Department of Computer Engineering, Chulalongkorn University

Conclusion
Compatibility & Transparency
– Compatibility with legacy user binary
– Working with threads, non-LIFO control flows,

and process communication
Effectiveness
– Catch all buffer-overflow attacks on control data

Simple
– Trivial hardware modifications

15

January 25, 2006Secure Bit: Buffer-Overflow Protection 57

Department of Computer Engineering, Chulalongkorn University

Publications
Patent Pending (October, 2005)
Piromsopa, K. and Enbody, R. Secure Bit : Transparent,
Hardware Buffer-Overflow Protection, IEEE Transaction on
Dependability and Secure Computing (Major revision)
Piromsopa, K. and Enbody, R. Survey of Buffer-Overflow
Protection, ACM Computer Survey (submitted)
Piromsopa, K. and Enbody, R. Buffer-Overflow Protection:
The Theory, EIT2006 (submitted)
Piromsopa, K. and Enbody, R. Arbitrary Copy: Bypassing
Buffer-Overflow Protections, EIT2006 (submitted)
More.. (IEEE Micro, WDDD at ISCA)

January 25, 2006Secure Bit: Buffer-Overflow Protection 58

Department of Computer Engineering, Chulalongkorn University

Demo

int residentcode() {
 /* We are in trouble */
 execl("/bin/sh","/bin/sh",0x00);
}
int vulnerable(char **argv) {
 int x;
 char *ptr;
 char buffer[30];
 ptr=buffer;
 printf("ptr %p - before\n",ptr);
 strcpy(ptr,argv[1]); /* overflow ptr */
 printf("ptr %p - after\n",ptr);
 strcpy(ptr,argv[2]); /* overflow the

target */
}
int main (int argc,char *argv[]) {
 printf("Sample program.\n");
 vulnerable(argv);
 printf("Program exits normally.\n");
}

int main(int argc,char **argv) {
 int *iptr;
 char *buf1 = (char

*)malloc(sizeof(char)*46);
 char buf2[5]="Addr";
 char **arr = (char **)malloc(sizeof(char

*)*4);
 memset(buf1,'x',0x20);
 iptr=(int *) buf1;
 iptr+=(0x20 / sizeof(int));
/* printf entry in the GOT */

 *iptr=0x08049730;
buf1[0x24]='\0';

/* address of residentcode() */

 iptr=(int *)buf2;
 *iptr=0x08048454;
/* arguments for execv() */
 arr[0]="./vul"; arr[1]=buf1;

arr[2]=buf2; arr[3]='\0';
 execv(arr[0],arr);
}

buffer ptr x
printf : AAAAA

0x8049730

0x8048454

January 25, 2006Secure Bit: Buffer-Overflow Protection 59

Department of Computer Engineering, Chulalongkorn University

Demo
Mount a multi-stage buffer-overflow attacks
in the emulator

$./wrapper
Sample program.

ptr 0xbffff960 - before

ptr 0x8049730 - after

sh-2.05b#

$./wrapper
Sample program.

ptr 0xbffff960 - before

ptr 0x8049730 - after

Segmentation fault

Without Secure Bit2 With Secure Bit2

Event type: PANIC
Device: [CPU]
Message: jmp_ed: sbit of target is not secure

Emulator Console

January 25, 2006Secure Bit: Buffer-Overflow Protection 60

Department of Computer Engineering, Chulalongkorn University

Questions?

Thank you
http://www.cp.eng.chula.ac.th/~krerk/sbit2/

