‘*

MICHIGAN STATE
UNIVERSITY

Secure Bit: Buffer Overflow Protection
“Give me a (little) bit,

and | will solve buffer overflow.”

Krerk Piromsopa, Ph.D.

Department of Computer Engineering

— "

Simple Buffer Overflow

#include <stdio.h>

int main(char argc,char *argv[]) {
int age;
char name[8];
char tmp[20];
printf("Enter your age:");
gets(tmp);

age=atoi(tmp);

printf("Enter_your name:");

gets(name);

printf("-----------\n%s is
years old\n*

,name,age);

}

name age

January 25, 2006 3

Overview —

4 Introduction 4 Implementation

4 Reviews 4 Evaluation

4 Theory 4 Analysis

4 Secure Bit 4 Conclusion

4 Design 4 Demo
N January 25, 2006 i

Stack Buffer Overflows a

All determine

execution flow=3 Return-address

Exception handlers Function attacks

Function pointers ~ return (Stack smashing)
m@e“ 4 Function-pointer
| attacks
i B BB |

4 Frame-pointer
T attacks

wsy

void func‘(cha{*p, int‘i) {
int j = 0;

CFoo foo;

_int (*£fp) (int) = &func;
,,,,,,,,,,,,,,,,, char b[128];
strepy (b,p) ;

Sample Buffer-Overflow Attack | |

4 An arbitrary pointer to any location printf
4 Targets any control data (mostly) jump
slot

[Xen e SLAPPER
Yz

e

__ntf ("ptr %p - before\n", ptr);
printf ("ptr %p - after\n",ptr);

printf (“done\n”) ;

_January 25, 2006 5

Classification ‘
of Buffer Overflow Protection

IH uffer-overflow Protections|

[I 1
tatic analysis Dynamic Solutions Isolation

Address Protection

Lexical Analysis

Non-executable

Input Protection

Semantic Analysis

Sandboxing

| Bounds Checking

[oviwcrion]

Department of

_January 25, 2006 7

Observations —

4 Mandatory conditions:

— Injecting malicious code/data ?
or known address of shell code.

— Redirect program
to execute malicious code/data

4 Similar Vulnerabilities

— Integer Overflow
(A subset of buffer-overflow)

— “printf” vulnerability

&

_January 25, 2006 6

Static Ana‘lysis l—

Prevent the problem before deploying the program.
4 Only known problems are prevented.

4 No run-time info
4 False alarm ?

Examples

= |TS4 - string matching

= FlawFinder & RATS

= Splint, BOON - security
enhanced lint, semantic analysis

= STOBO - profiling tool

= LibSafe — safe standard C lib

&

_January 25, 2006 8

- A Address Protection: metada
Dynamic Solut onsI — data —
y Canary Words Address Encode
. Stack|
& Address Protection 4 Use canary for H & Encode an
q P]
& Input Protection mosicton [> oaee & prodeinee
addresses key
; 4 StackGuard, Memory | o eon
4 Bounds (?hecklng Prapolioe sinter | dodoe
4 Obfuscation VN & PointGuard
?
Copy of Address Tags
|Ssues 4 Use a'nother
copy for " Parameters
= Assumptions et 2 verification e e with
i e £ 4 StackGhost, each word for Function Pointer
= Creation of metadata srack Frame RAS, Split tagging return
Validati £ tadat Stack Stack, RAD, address, Buffer
= Validation of metadata DISE, functi
i i X — return 2 StackShield, p‘i,'}ﬁ{L;’,’;
= Handling of invalid data — prEpe IBM system/38
January 25, 2006 9 January 25, 2006 10

Other Dynamic Solutions — . —
Input Protection

Bound Checking Obfuscation
4 Permute the 4 Input must not be used as
& :ymbol ttable/ & smedi ordgr of control data ————
egmen 3
Degcriptor Table [retuzrn address routines, and 4 Boundary
4 Enhanced structures — Minos: segmentation
Pointers @ Address — Tainted pointer: SimpleScalar
Segmentation m gsbff;ca"o"’ 1/0 functions
r—— — — Dynamic Flow Tracking:
SimpleScalar 1/O functions
4 Untaint

— Minos: creation time
— Tainted pointer: CMP, XOR
— Dynamic Flow Tracking: XOR

De nt of De nt of
January 25, 2006 11 January 25, 2006 12

Isolation —

4 Limit the execution of code that may
result from buffer-overflow attacks.
(NX, kernel NX)

4 Sandbox the whole process
from accessing certain system
resources based on
a predefined policy. (TCPA)

4 Secure code installation
and run-time environment (SPEF)

_ Department of

January 25, 2006 13

SimpleScalar —

& A RISC architecture = Simple ISA
4 Simple design

4 Parallelism & Hazards

4 Caches

_ Department of

January 25, 2006 15

Additional Space & |nme ,

& Meta data is necessary.

4 Segmentation:

— 1A-32 uses 64-bit descriptor,
1-432 uses 128-bit descriptor.

— 1 descriptor per variable

4 StackGuard:
— A canary word per call]

& Secure Bit: -Effectllveness?
~ 1 bit (Minimum?) *Run-time Penalty?
— 1 time cost

_ Department of

January 25, 2006 14

Split Stack —

Data Sack

Dt Sack

T e

T e A

Contrl Stack Control Stack

s addras A o &

Tocal variables | £ [ocal variabies

fot | retum address €

Tres e

-

{a) Unified Stack (b) C iler-based Split Stack {c) Archi Supported Split Stack

4 Separate Control and Data Stack

_ Department of

By UIUC

January 25, 2006 16

IBM ProPolice —

et (A) 4 Guard Value (Similar to
return address StackGuard)
frame pointer— | previous frame pointer .
guard 4 Declare pointers after
arrays (B)
_ Tocal variables (C) buffer.
stack pointer— ‘& Pointer in Structure ?

4 Original Code 4 Reorder Code

int bar() { int bar() {
void (* funct2) (); char buff[80];
char buff[80]; void (* funct2) ();

Figure from J. Etoh., “GCC extension for protecting applications from stack-smashing attacks,”
i o b comioroecis/seciiyissal , June 2000

[———

By IBM Research, Japan

_January 25, 2006 17

StackGuard —

4 Random canary Stack FER Gack FFF
 Terminator canary e |, @,
N,
& Terminator with stack frame /7 stack frame
. . return address return address
diversity canary ol canar
& MemGuard Protection bufler | Cbuffer

& Similar tool from 000 000
IBM ProPolice

4 Alignment?

Figure from *StackGuard: Defending Programs Against Stack Smashing Attacks,”
Poster Presentation from

[T ——

By Oregon Graduate Institute (Immunix)

_January 25, 2006 19

Others (sdftware; —

4 Adddress Obfuscation: s ecsu.m)
— Randomize the base address
of the memory segment
— Permute the order of
variables/routines
— Problem: Fragmentation,
compatibility ?
& SPEF: ucmnsuen
Rlzlr;%g\zg%pnon to securely install
— Instruction is decoded
and reordered in I-CACHE
4 Instruction-Set Randomization

(By Columbia U. & Draxel U)
— XORing instruction with a per-
process key
4 Difficulty in injecting malicious
code/data does not protect the
system from buffer overflow
attacks. Why ?

ﬂ—

Jionete e

_January 25, 2006 18

PointGuard —

&

2. Aceess random data referenced
by decryphion of comupled peike

1. Fetch Pointer Vaha,

Pomiter Deayption

(’u.w hl Porter Dita Mulicious
B B 8 Data
I 1340
1234 (1340

4 Encrypt the pointer for storing, decrypt for dereferring
4 Compatibility ?

4 Initialization ?

4 Performance ?

4 Encryption Algorithm ?

ﬂ—

By Oregon Graduate Institute (Immunix)

_January 25, 2006 20

Array Bounds Checkinngegmen

4 Symbol table/ Segment hd

Storage object

Descriptor Table
& Explicitly declare and
refer every buffer with base
base and boundary penter
(including integer, float,.. fmi
Why ?) Enhanced piner
h. *a;
& Example: Intel IA-32, ar for
|_432 b[10]; (a=b;a<&b[10] ;a++)
. *a = gb; *a='0";
& More than 30 times b[11]=10;
slowdown
of
~ January 25, 2006 2

4 Secure Program Execution Framework

4 Using encryption to securely install the software

4 Instruction is decoded
and reordered in I-CACHE

4 Difficult to inject malicious code
4 Performance ?
4 Data ?

SPEF

By Microsoft & UCLA

— .

January 25, 2006 23

Address Obfuscation

4 Randomize the base address

Stack
of the memory segment
& Permute the order of Heap
variables/routines
4 Random gaps between object BSS
4 Problem: Fragmentation, Data
compatibility ? Toxt (Readonly)
4 Similar method: PAX’'s ASLR
(Address Space Layout

Randomization)

h— .

By Stony Brook U., NY.

January 25, 2006 22

Others (soﬁvare)—

& StackGhost: o & RAD: e stto .ot Now Yokatsony ooty

— Use mprotect to protect Return
Address Repository (RAR)
— MineZone RAR, Read-only RAR
— Performance ?
4 StackShield: o vensicaion
— Save redundant copy of return
address
— Copy the return address from
the redundant copy back to
original stack
Check the return address with
the redundant copy
— Force the code to be in text
section

Legal use of executing code in
heap : LISP, OOP

— Use register window
Y Spllt Stack (by UIUC)

— Separate control and
data stack

4 SRAS: (by UIUC)
— Use RAS as a validation
copy the address
4 Overflow?, Speculative
update (non-LIFO)?

h— .

January 25, 2006 24

4 Software/Hardware “NX”
(currently in the news)

4 Heap-based attacks
& Legal use of executable stack ?

4 Attacks that do not injecting
the malicious code/data?

&

_January 25, 2006 25

W_
Non-Executable Stack/Memory

Complement to
Intel’s LaGrande & Microsoft’'s NGSCB
4 NGSCB

- Strong prOCeSS Standard Protected
isolation

— Sealed storage o
— Secure user
interface

— Attestation

& Hardware support
sandboxing

— Domain separation

LaGrande Technology

Trusted = Secure ?

&

_January 25, 2006 27

Instruction Set Randomization

4 XORing instruction with key

& Per process key

4 Difficult to inject malicious code
& Library ?

& Data ?

By Columbia U. & Draxel U.

&

_January 25, 2006 26

&

Analysis—

4 Pitfalls

— Insufficient assumptions

— Insufficient protection of
metadata

4 Performance

4 Compatibility and
Transparency
(e.g. non-LIFO control
flows)

4 Deployment and Cost

_January 25, 2006 28

' Compatibility:
Non-LIFO Control Flow

NEAR ENTRY:
POP AX ; POP instruction pointer (IP)
§iEimiineed 30 "% FAR & NEAR Call
PUSHCS ; PUSH CS -
PUSHAX ; PUSH IP back onto stack thlmlzatlon (fOr
FAR ENTRY: SIZG)
RETF ; POP IP and CS off stack .RET fOI'JMP
*More..
P cs Current approaches?
Canary 1P .|gn0re
*Cannot handle
of
“ January 25, 2006 29

4 Buffer overflow can occur in Java, Perl or
any type-safe languages.
. . . hy?
4 No protection mechanism is pe#\é&, but the
reimplementation of all code: BIOS, Kernel,

Library (Static & Dynamic), Drivers,
applications, etc...

Facts

Really?
& How about the Secure Bit?

From artic_

& Microprogramming, April, 1972
“I believe that
the average computer of the year 2000 will:
— Have word by word protection and data
description, ...”

4 ACM SIGARCH, July, 2003
“Is anyone up for a discussion of capabilities,
segments, 2-dimensional memory? Techniques
which, among other things, render buffer overrun
impossible.”

— .

January 25, 2006 30

Theory T

& Definition 1:The condition wherein the data transferred to a
buffer exceeds the storage capacity of the buffer and some of the
data "overflows" into another buffer, one that the data was not
intended to go into.

Definition 2: A buffer-overflow attack on control data is an
attack that (possibly implicitly) uses memory-manipulating
operations to overflow a buffer which results in the modification of
an address to point to malicious or unexpected code.

Observation: An analysis of buffer-overflow attacks indicates
that a buffer of a process is always overflowed with a buffer
passed from another domain (machine, process)—hence its
malicious nature.

Definition 3: Maintaining the integrity of an address means that
the address has not been modified by overflowing with a buffer
passed from another domain.

S

S

S

— .

January 25, 2006 32

Theory

Postulate 1: In buffer-overflow attacks on control data, the generic buffer/memory-
manipulating operations are used by the vulnerable routine to overflow the address (e.g. a
return address or a function pointer).

Theorem 1: Modifying an address by replacing (“overflowing”) it using a buffer passed from
another domain is a necessary condition for buffer-overflow attack on control data.
Restatement: If there is to be a buffer-overflow attack on control data, an

address must be modified using a buffer passed from another domain.
Proof:

Theorem 1 follows directly from Definition 1, and Definition 2.
QED
Corollary 1.1: Preserving the integrity of an address is a sufficient condition for
preventing a buffer-overflow attack.

Restatement: If the integrity of an address is preserved, that is a sufficient condition for
preventing a buffer-overflow attack.

Proof: From Theorem 1, “If there is to be a buffer-overflow attack, an address must be
modified by manipulating a buffer from another domain.” The contrapositive of that
statement is “If an address cannot be modified (or such modification can be detected),
then a buffer-overflow attack is not possible.” We know that the contrapositive of a true
statement is true.

Department of Computer Engineering, Chulalongkorn University
January 25, 2006 33

— (Co_

Similar Concepts

4 “All input is evil until proven otherwise”
[Howard and LeBlanc]

4 “Data must be validated as it crosses the boundary
between untrusted and trusted environments.”
[Howard and LeBlanc]

of
January 25, 2006 35

Secure Bit“—

Give me a little Bit and | will solve buffer-overflow attacks.

Protocol 1:
Passing a buffer across domains (devices, machines,
and processes) always sets the Secure Bit.

Restatement: All input will have the Secure Bit set. |

Hardware Enforcement: (Protocol 2)
Data from another domain (with Secure Bit set) must
not be used as jump target.

h— .

January 25, 2006 34

Concept T ——

Data passing from another domain must not be used
as a retum address or a function pointer

W

Process

Parameters
External Return Address
input Function Pointers
(devices
or users)

Buffer

‘ Operating System & Drivers ‘

‘ Hardware ‘

of
January 25, 2006 36

Secure System

& Definition 4: A security policy is a statement that
partitions the states of the system into a set of
authorized, or secure, states and a set of
unauthorized or nonsecure, states. [Bishop]

& Definition 5: A secure system is a system that
starts in an authorized state and cannot enter an
unauthorized state. [Bishop]

January 25, 2006 37

Restatement: A system that does not use input as a control data is a secure
system with respect to buffer-overflow attacks on control data.

o 2
Operation ‘V
Proof:

Assume that a system is partitioned into two states:
normal operation and buffer-overflow attack.

Only overwriting the address (e.g. a return address or a function pointer) with an
address passed as a buffer (input) to vulnerable programs will result in the state of
buffer-overflow attack.
By the definition of buffer-overflow attacks (Definition 2)

If such overflowing can be recognized and prevented, the system will not result in
the state of buffer-overflow attacks.

By the definition of preservation of the address (Definition 3)
With respect to Definition 5, our system cannot enter an unauthorized state and is
considered to be a secure system

— "

QED

January 25, 2006 39

Formalization —

Lemma 2: A system which preserves the integrity of an
address (e.g. a return addresses or a function pointer) is a
secure system with respect to buffer-overflow attacks.

Restatement: A system that does not use input as a control
data is a secure system with respect to buffer-overflow attacks
on control data.

— "

January 25, 2006 38

Formalization (Cont.) —

Lemma 3: Secure Bit and Protocol 1 can preserve the integrity of an
address, and result in a secure system with respect to buffer-overflow
attacks.

Proof:

With Secure Bit and Protocol 1, we can detect that an address
(e.g. a return address or a function pointer) is overflowed by a buffer
passed from another domain (including input).
If we can detect that an address is modified by a buffer from another
domain, we can preserve the integrity of the address.

This follows directly from Definition 3.
Thus Secure Bit preserves the integrity of the address and is a secure
system with respect to buffer-overflow attacks.

This follows directly from Lemma 2.
QED

January 25, 2006 40

— "

10

Protocol Enforcemen

& “Threat surface” is defined as all possible input
crossing from the software interface.

4 A domain is a boundary with respect to the current
process

4 sbit_write mode is added to a processor for
passing data across domain (set Secure Bit)

4 The kernel will use this mode to move data across

domains.
4 Call, Jump, and Return instructions are
modified.
of
~ January 25, 2006 a1

Design: InstrW

4 sbit_write flag

4 The semantics of the CALL and JUMP instruction are
modified to validate the Secure Bit

& Other instructions that access memory are modified to
carry the Secure Bit along with the memory word when the
sbit_write mode is cleared, and to set the Secure Bit at the
destination when the sbit_write mode is set.

4 Operations (e.g. shift, arithmetic, or logical) with an
insecure operand have an insecure result (Secure Bit is
set). An immediate operand is considered to be secure
(Secure Bit is cleared).

— .

January 25, 2006 43

Design: MW

An additional bit for
a word of memory saeess 0

* ata (/o)
Processor

ess & Control (x/0)
Adar contzol)

Memory
Chip

>
>

Signals s m
N

Data

Processor ¢ pata (1/0) *

re it 3
« H
/o) Main
memory
%
¥
%
£ TITes Tor Seoure BT eorae
H
—saTsseer 81 Line Base Register
< B » Selector ¥~ Secure Bit Addres
feeore Bk WO SecureBits
of
January 25, 2006 42

Design (ch‘nt.)—
4ALU

re Bit of Resul}

& Program Counter

| e [|

l Exception ?

4 Registers
—— o

January 25, 2006 44

11

Design: Operatin

4 Domains and Buffer Manipulation

— Moving data between

Kernel and Process
in sbit_write mode

4 Virtual Memory
— Firmware

Base Register

Main
memory

— Software Management sf:cm:BuAdd.u

SecureBits

— Regular Paging on top
of modified Hardware

e

_January 25, 2006

BOCHS: Secure

// set/Clear Secure Bit by KPR
Bit32u a20addr_s;
Bit8u sbyte;
for (int i=0;i<len ;i++)

// Read Secure Bit by KPR
Bit32u a20addr_s;
Bit8u sbyte;

Bit8u sread;

sbyte=1 << sbyte;
if (*sbit==1)

sbyte= (a20addr+i) &
0%00000007;

¥
vector_s[a20addr_s] &=~ (sbytes&Oxff

{ sread=0x00;
a20addr_s=(a20addr+i)>>3; for (int i=0;i<len ;i++)
sbyte=(a20addr+i) & {

0x00000007; a20addr_s=(a20addr+i) >>3;

{ // set sbyte=1 << sbyte;
vector_s[a20addr_s]|=(sbytes0x£ff) sread|=(vector_s[a20addr_s]&sbyte)

} sbyte=sbyte<<l;

else ¥

{ // clear *sbit=sread;

—m,—’s%(
Vi
¥
sbyte=sbyte<<l;
} <

SaTactor

Yacure Bie (1/0)

pC e e S

]
% —sarecter® 8-1Line

» Selector

Set/Clear Secure Bit Read Secure Bit

P

_January 25, 2006

Implementation

4 BOCHS C++ Objects
& Memory Boundary

& Multiple Instances

4 Instructions Set

& More than 5304
routines
(3600 routines in CPU
Object)

e

_January 25, 2006

BOCHS: Memory In

/// Overload Functions

/// For Secure Bit (KPR)

11/

/// Read Data and Secure Bit

BX_MEM SMF void readPhysicalPage (BX_CPU_C *cpu, Bit32u addr,
unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmi(3);

/// Write Data and Secure Bit

BX_MEM SMF void writePhysicalPage(BX CPU_C *cpu, Bit32u addr,
unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmi(3);

/// Write Data (with optional Secure Bit)

/// if ignore=0, leave the Secure Bit unmodified

BX_MEM SMF void writePhysicalPage(BX CPU_C *cpu, Bit32u addr,
unsigned len, void *data, int *sbit,int ignore) BX_CPP_AttrRegparmi(3);

11/

/// End (KPR)

11/

/// Read Data, ignore Secure Bit

BX_MEM SMF void readPhysicalPage (BX_CPU_C *cpu, Bit32u addr,
unsigned len, void *data) BX_CPP_AttrRegparmh(3);

/// Write Data, ignore Secure Bit

BX_MEM SMF void writePhysicalPage(BX CPU_C *cpu, Bit32u addr,
unsigned len, void *data) BX_CPP_AttrRegparmh(3);

Avoid modifying 3000+ routines

Bt of Computer Engineering, Chulalongkorn University
January 25, 2006 48

12

BOCHS: Instruction Set

4 Macros for operations on Secure Bit
// Secure Bit operation for each type of ALU instruction
#define SBIT_SHX(sbitl) (sbitl ==0)?0:1

#define SBIT_ROX(sbitl) (sbitl)20:1

#define SBIT_XOR(sbitl,sbit2) (sbitl|sbit2)
#define SBIT_AND(sbitl,sbit2) (sbitl|sbit2)
#define SBIT_OR(sbitl, sbit2) (sbitl|sbit2)
#define SBIT_NOT (sbitl) (sbitl ==0)?0:1

#define SBIT_ADD(sbitl,sbit2) (sbitl|sbit2)
#define SBIT_SUB(sbitl,sbit2) (sbitl|sbit2)
#define SBIT_MUL(sbitl,sbit2) (sbitl|sbit2)

// and DIV

4 Set Secure Bit

sbit=(sbit_mode)? 1l:sbit;

About 2410 lines of code in

4 Validate Control data
// Validate call target
if (sbit != 0) {
BX_INFO(("call ew:
#ifdef HAS_SBIT_EXCEPTION

#endif
L

exception (BX_GP_EXCEPTION, 0, 0);

607 routines affected

sbit of target is not secure"));

Department of Computer Engineering, Chulalongkorn University
_January 25, 2006 49

Sbit_write mode

-

Linux Kernel (Sample Code)

// For Secure Bit 2
#define SET_SBITMODE() \
asm volatile(\

" pushl
" lahf\n" \
" orb
" sahf\n" \
" popl seax™
#define CLR_SBITMODE() \
asm volatile(\

seax\n" \

$0x20, %ah\n" \

pushl seax\n" \

" lahf\n" \ return n;
" andb $0xdf, %ah\n" \)

" sahf\n" \

" popl %eax”)

unsigned long

__generic_copy_to_user (void *to,
const void ¥from, unsigned
long n)

SET_SBITMODE () ;
) if (access_ok(VERIFY_WRITE,
to, n))

__copy_user (to, from,n);
CLR_SBITMODE () ;

— >

_January 25, 2006 51

Linux Kernal

Threat
Surface

Process

Etc. Standard Input

Input Devices Storage Devices TCP/IP
Kernel
_ of
_January 25, 2006 50

Evaluation |.

4 Booting Linux: complex test of compatibility of Secure Bit
from an operating system point of view

4 Running existing application: Test of backward compatibility
and transparency to a legacy application

4 Hacking Test: Test protection against buffer overflow, i.e.
test the effectiveness of Secure Bit

4 Modified Instructions: the impact of Secure Bit on
instruction set architecture

— "

_January 25, 2006 52

13

4 gzip (SPEC CPU2000): Lempel-Ziv coding (LZ77) compression
algorithm

4 bzip2 (SPEC CPU2000): Burrows-Wheeler block-sorting text
compression algorithm, and Huffman coding.

4 gcc (SPEC CPU2000): Compiler. Exercises a wide variety of data
structures

rs

Perl and Shell scripts: Popular scripting languages.
4 OpenSSL: cryptography library

rs

Apache with mod_ssl: Apache version 1.3.12 and mod_ssl. Vulnerable
to SLAPPER worm. multithreaded server application (including SSL).

rs

Telnetd and WUFTPD: legacy network applications (and protocols).
4 OpenSSH: Encrypted client-server applications.

4 Java Virtual Machine: Sun JVM and Kaffe. Garbage collector, Virtual
Machine and lightweight processes (threads).

— "

January 25, 2006

Tested Applications —

4 Space & Memory Interface
— Trivial modifications

— Covered in 3 days of
MOORE’s LAW

— Minimal (comparing to
Segmentation)

4 Backward Compatibility

— 100% to legacy user binaries
4 Deployment

— Processor only solution
4 Performance

— No significant penalty

Physical Memory Address Main
memory

Base Register

Secure Bit Addrefs

SecureBits

— "

January 25, 2006

pnalye

—

Hacking Test

4 Stack smashing and return-address attacks
4 Function-pointer attacks

4 Global Offset Table attacks

4 Apache SLAPPER worm

4 See DEMO

— "

January 25, 2006 54

Conclusion —

4 Compatibility & Transparency
— Compatibility with legacy user binary
— Working with threads, non-LIFO control flows,
and process communication

4 Effectiveness

— Catch all buffer-overflow attacks on control data
4 Simple

— Trivial hardware modifications

— "

January 25, 2006 56

14

Publications —

4 Patent Pending (October, 2005)

4 Piromsopa, K. and Enbody, R. Secure Bit : Transparent,
Hardware Buffer-Overflow Protection, IEEE Transaction on
Dependability and Secure Computing (Major revision)

4 Piromsopa, K. and Enbody, R. Survey of Buffer-Overflow
Protection, ACM Computer Survey (submitted)

4 Piromsopa, K. and Enbody, R. Buffer-Overflow Protection:
The Theory, EIT2006 (submitted)

4 Piromsopa, K. and Enbody, R. Arbitrary Copy: Bypassing
Buffer-Overflow Protections, EIT2006 (submitted)

4 More.. (IEEE Micro, WDDD at ISCA)

- n

January 25, 2006 57

Demo

‘—

4 Mount a multi-stage buffer-overflow attacks
in the emulator

With Secur

Without Secure Bi

- Department

January 25, 2006 59

0x8049730

**arg)

)*16) 5

* printf entry in the GOT */
*iptr=0x08049730;
bufl[0x24]="\0";

/* address of r
iptr=(in
*iptr=0x08048454;

strepy (ptr, ar
target */

January 25, 2006 58

Questions? —

4 Thank you
4 http://www.cp.eng.chula.ac.th/~krerk/sbit2/
p--3
N January 25, 2006 50

15

